Phân tích nguyên lý Binius STARKs và suy nghĩ tối ưu hóa
1 Giới thiệu
Một trong những lý do chính khiến STARKs kém hiệu quả là: hầu hết các giá trị trong chương trình thực tế đều nhỏ, chẳng hạn như chỉ số trong vòng lặp for, giá trị đúng/sai, bộ đếm, v.v. Tuy nhiên, để đảm bảo tính an toàn của chứng minh dựa trên cây Merkle, việc sử dụng mã Reed-Solomon để mở rộng dữ liệu sẽ tạo ra nhiều giá trị dư thừa bổ sung chiếm toàn bộ miền, ngay cả khi giá trị gốc rất nhỏ. Để giải quyết vấn đề này, việc giảm kích thước miền trở thành chiến lược then chốt.
Như bảng 1 cho thấy, độ rộng mã hóa của STARKs thế hệ đầu tiên là 252bit, độ rộng mã hóa của STARKs thế hệ thứ hai là 64bit, độ rộng mã hóa của STARKs thế hệ thứ ba là 32bit, nhưng độ rộng mã hóa 32bit vẫn còn rất nhiều không gian lãng phí. So với đó, trường nhị phân cho phép thao tác trực tiếp trên bit, mã hóa chặt chẽ và hiệu quả mà không có không gian lãng phí nào, tức là STARKs thế hệ thứ tư.
| Thời gian | STARKs | Độ rộng mã hóa |
|------|--------|----------|
| 2018 | Thế hệ thứ 1 | 252bit |
| 2021 | Thế hệ thứ 2 | 64bit |
| 2022 | Thế hệ 3 | 32bit |
| 2023 | Thế hệ thứ 4 | 1bit |
Bảng 1: Đường dẫn biến thể STARKs
So với Goldilocks, BabyBear, Mersenne31 và các nghiên cứu mới trong những năm gần đây về miền hữu hạn, nghiên cứu về miền nhị phân có thể được truy nguyên đến những năm 80 của thế kỷ trước. Hiện nay, miền nhị phân đã được ứng dụng rộng rãi trong mật mã học, ví dụ điển hình bao gồm:
Tiêu chuẩn mã hóa nâng cao (AES), dựa trên miền F28;
Mã xác thực tin nhắn Galois ( GMAC ), dựa trên trường F2128;
Mã QR, sử dụng mã hóa Reed-Solomon dựa trên F28;
Giao thức FRI ban đầu và zk-STARK, cũng như hàm băm Grøstl lọt vào vòng chung kết SHA-3, hàm này dựa trên miền F28, là một loại thuật toán băm rất phù hợp cho việc đệ quy.
Khi sử dụng miền nhỏ hơn, việc mở rộng miền trở nên ngày càng quan trọng để đảm bảo an toàn. Miền nhị phân mà Binius sử dụng hoàn toàn phụ thuộc vào việc mở rộng miền để đảm bảo an toàn và khả năng sử dụng thực tế. Hầu hết các đa thức liên quan đến tính toán của Prover không cần phải vào miền mở rộng, mà chỉ cần hoạt động trong miền cơ sở, từ đó đạt được hiệu suất cao trong miền nhỏ. Tuy nhiên, kiểm tra điểm ngẫu nhiên và tính toán FRI vẫn cần đi sâu vào miền mở rộng lớn hơn để đảm bảo an toàn cần thiết.
Khi xây dựng hệ thống chứng minh dựa trên miền nhị phân, có 2 vấn đề thực tế: Khi tính toán biểu diễn trace trong STARKs, kích thước miền sử dụng phải lớn hơn bậc của đa thức; Khi cam kết Merkle tree trong STARKs, cần thực hiện mã hóa Reed-Solomon, kích thước miền sử dụng phải lớn hơn kích thước sau khi mở rộng mã.
Binius đã đề xuất một giải pháp đổi mới, xử lý hai vấn đề này một cách riêng biệt, và đạt được điều này bằng cách biểu diễn cùng một dữ liệu thông qua hai cách khác nhau: đầu tiên, sử dụng đa biến ( cụ thể là đa thức nhiều tuyến tính ) thay thế cho đa thức một biến, thông qua giá trị của nó trên "siêu lập phương" ( hypercubes ) để biểu diễn toàn bộ quỹ đạo tính toán; thứ hai, do chiều dài của mỗi chiều trong siêu lập phương đều là 2, nên không thể thực hiện mở rộng Reed-Solomon tiêu chuẩn như STARKs, nhưng có thể coi siêu lập phương như hình vuông ( square ), dựa trên hình vuông đó để thực hiện mở rộng Reed-Solomon. Phương pháp này không những đảm bảo tính an toàn mà còn nâng cao đáng kể hiệu suất mã hóa và hiệu suất tính toán.
2 Phân tích nguyên lý
Hiện tại, hầu hết các hệ thống SNARKs được xây dựng thường bao gồm hai phần sau:
Chứng minh Oracle Tương tác Đa thức Lý thuyết Thông tin (Information-Theoretic Polynomial Interactive Oracle Proof, PIOP): PIOP là cốt lõi của hệ thống chứng minh, chuyển đổi các mối quan hệ tính toán đầu vào thành các phương trình đa thức có thể xác minh. Các giao thức PIOP khác nhau thông qua sự tương tác với người xác minh, cho phép người chứng minh gửi dần dần các đa thức, để người xác minh có thể xác minh tính chính xác của phép tính chỉ thông qua việc truy vấn một lượng nhỏ kết quả đánh giá của các đa thức. Các giao thức PIOP hiện có bao gồm: PLONK PIOP, Spartan PIOP và HyperPlonk PIOP, mỗi cái đều có cách xử lý các biểu thức đa thức khác nhau, từ đó ảnh hưởng đến hiệu suất và hiệu quả của toàn bộ hệ thống SNARK.
Kế hoạch cam kết đa thức ( Polynomial Commitment Scheme, PCS ): Kế hoạch cam kết đa thức được sử dụng để chứng minh xem các phương trình đa thức được tạo ra bởi PIOP có hợp lệ hay không. PCS là một công cụ mật mã, qua đó, người chứng minh có thể cam kết một đa thức và sau đó xác minh kết quả đánh giá của đa thức đó, đồng thời ẩn đi thông tin khác của đa thức. Các kế hoạch cam kết đa thức phổ biến bao gồm KZG, Bulletproofs, FRI ( Fast Reed-Solomon IOPP ) và Brakedown, v.v. Các PCS khác nhau có hiệu suất, độ an toàn và bối cảnh áp dụng khác nhau.
Dựa trên nhu cầu cụ thể, chọn các PIOP và PCS khác nhau, và kết hợp với miền hữu hạn hoặc đường cong elliptic phù hợp, có thể xây dựng hệ thống chứng minh có các thuộc tính khác nhau. Ví dụ:
• Halo2: Kết hợp giữa PLONK PIOP và Bulletproofs PCS, dựa trên đường cong Pasta. Halo2 được thiết kế với trọng tâm vào khả năng mở rộng và loại bỏ thiết lập tin cậy trong giao thức ZCash.
• Plonky2: áp dụng PLONK PIOP và FRI PCS kết hợp, và dựa trên miền Goldilocks. Plonky2 được thiết kế để đạt được tính đệ quy hiệu quả. Khi thiết kế những hệ thống này, PIOP và PCS được chọn phải tương thích với miền hữu hạn hoặc đường cong elliptic được sử dụng, để đảm bảo tính chính xác, hiệu suất và an toàn của hệ thống. Sự lựa chọn những kết hợp này không chỉ ảnh hưởng đến kích thước chứng minh SNARK và hiệu quả xác minh, mà còn quyết định xem hệ thống có thể đạt được tính minh bạch mà không cần cài đặt đáng tin cậy hay không, và liệu có thể hỗ trợ chứng minh đệ quy hoặc chứng minh tổng hợp và các chức năng mở rộng khác hay không.
Binius: HyperPlonk PIOP + Brakedown PCS + miền nhị phân. Cụ thể, Binius bao gồm năm công nghệ chính để đạt được hiệu suất và an toàn. Đầu tiên, cấu trúc toán học dựa trên tháp miền nhị phân (towers of binary fields) đã tạo thành nền tảng cho việc tính toán của nó, cho phép thực hiện các phép toán đơn giản trong miền nhị phân. Thứ hai, Binius trong giao thức chứng minh Oracle tương tác (PIOP), đã điều chỉnh kiểm tra sản phẩm và hoán vị của HyperPlonk, đảm bảo sự kiểm tra nhất quán an toàn và hiệu quả giữa các biến và sự hoán vị của chúng. Thứ ba, giao thức giới thiệu một chứng minh dịch chuyển đa tuyến mới, tối ưu hóa hiệu quả xác minh các mối quan hệ đa tuyến trên miền nhỏ. Thứ tư, Binius sử dụng một chứng minh tìm kiếm Lasso cải tiến, cung cấp tính linh hoạt và độ an toàn mạnh mẽ cho cơ chế tìm kiếm. Cuối cùng, giao thức sử dụng kế hoạch cam kết đa thức miền nhỏ (Small-Field PCS), cho phép nó thực hiện hệ thống chứng minh hiệu quả trên miền nhị phân, và giảm thiểu chi phí thường liên quan đến miền lớn.
2.1 trường hữu hạn: tính toán dựa trên towers of binary fields
Trường nhị phân tháp là chìa khóa để thực hiện tính toán có thể xác minh nhanh chóng, chủ yếu do hai yếu tố: tính toán hiệu quả và quy trình số học hiệu quả. Trường nhị phân về bản chất hỗ trợ các phép toán số học hiệu quả cao, khiến nó trở thành lựa chọn lý tưởng cho các ứng dụng mật mã nhạy cảm với yêu cầu hiệu suất. Hơn nữa, cấu trúc trường nhị phân hỗ trợ quy trình số học đơn giản hóa, tức là các phép toán thực hiện trên trường nhị phân có thể được biểu diễn dưới dạng đại số gọn gàng và dễ xác minh. Những đặc điểm này, kết hợp với khả năng tận dụng đặc điểm phân cấp của nó thông qua cấu trúc tháp, làm cho trường nhị phân đặc biệt phù hợp với các hệ thống chứng minh có khả năng mở rộng như Binius.
Trong đó, "canonical" đề cập đến cách biểu diễn duy nhất và trực tiếp của các phần tử trong miền nhị phân. Ví dụ, trong miền nhị phân cơ bản F2, bất kỳ chuỗi k bit nào cũng có thể được ánh xạ trực tiếp đến một phần tử miền k bit. Điều này khác với miền số nguyên tố, nơi mà miền số nguyên tố không thể cung cấp cách biểu diễn chuẩn này trong một số bit nhất định. Mặc dù miền số nguyên tố 32 bit có thể chứa trong 32 bit, nhưng không phải mọi chuỗi 32 bit đều có thể tương ứng duy nhất với một phần tử miền, trong khi miền nhị phân lại có sự tiện lợi của ánh xạ một-một này. Trong miền số nguyên tố Fp, các phương pháp giảm phổ biến bao gồm giảm Barrett, giảm Montgomery, và các phương pháp giảm đặc biệt cho các miền hữu hạn cụ thể như Mersenne-31 hoặc Goldilocks-64. Trong miền nhị phân F2k, các phương pháp giảm thường dùng bao gồm giảm đặc biệt ( như được sử dụng trong AES ), giảm Montgomery ( như được sử dụng trong POLYVAL ) và giảm đệ quy ( như Tower ). Bài báo "Khám Phá Không Gian Thiết Kế của ECC-Hardware Triển Khai Miền Số Nguyên Tố So Với Miền Nhị Phân" chỉ ra rằng, miền nhị phân không cần phải thêm bậc trong các phép toán cộng và nhân, và phép toán bình phương trong miền nhị phân rất hiệu quả, vì nó tuân theo quy tắc đơn giản (X + Y )2 = X2 + Y 2.
Như hình 1 cho thấy, một chuỗi 128 bit: Chuỗi này có thể được giải thích theo nhiều cách trong ngữ cảnh của miền nhị phân. Nó có thể được coi là một phần tử duy nhất trong miền nhị phân 128 bit, hoặc được phân tích thành hai phần tử miền tháp 64 bit, bốn phần tử miền tháp 32 bit, 16 phần tử miền tháp 8 bit, hoặc 128 phần tử miền F2. Sự linh hoạt của cách biểu diễn này không yêu cầu bất kỳ chi phí tính toán nào, chỉ là một chuyển đổi kiểu chuỗi bit (typecast), là một thuộc tính rất thú vị và hữu ích. Đồng thời, các phần tử miền nhỏ có thể được đóng gói thành các phần tử miền lớn hơn mà không cần chi phí tính toán bổ sung. Giao thức Binius đã tận dụng đặc điểm này để cải thiện hiệu quả tính toán. Ngoài ra, bài báo "On Efficient Inversion in Tower Fields of Characteristic Two" đã khám phá độ phức tạp tính toán của các phép nhân, bình phương và đảo ngược trong miền tháp nhị phân n bit ( có thể phân rã thành miền con m bit ).
Hình 1: Miền nhị phân tháp
2.2 PIOP: Phiên bản cải biên HyperPlonk Product và PermutationCheck------ Áp dụng cho trường nhị phân
Thiết kế PIOP trong giao thức Binius đã tham khảo HyperPlonk, áp dụng một loạt cơ chế kiểm tra cốt lõi để xác minh tính chính xác của đa thức và tập hợp đa biến. Những kiểm tra cốt lõi này bao gồm:
GateCheck: xác minh chứng thực bí mật ω và đầu vào công khai x có thỏa mãn mối quan hệ toán học C(x, ω)=0, để đảm bảo mạch hoạt động chính xác.
PermutationCheck: Xác minh kết quả đánh giá của hai đa thức nhiều biến f và g trên hypercube Boolean có phải là quan hệ hoán vị hay không f(x) = f(π(x)), để đảm bảo tính nhất quán của sự sắp xếp giữa các biến đa thức.
LookupCheck: Xác thực giá trị của đa thức có nằm trong bảng tra cứu đã cho hay không, tức là f(Bµ) ⊆ T(Bµ), đảm bảo một số giá trị nằm trong phạm vi xác định.
MultisetCheck: Kiểm tra xem hai tập hợp đa biến có bằng nhau hay không, tức là {(x1,i,x2,)}i∈H={(y1,i,y2,)}i∈H, đảm bảo tính nhất quán giữa nhiều tập hợp.
ProductCheck: Kiểm tra xem giá trị của đa thức có lý trên siêu lập phương Boolean có bằng một giá trị được khai báo nào đó ∏x∈Hµ f(x) = s, để đảm bảo tính chính xác của tích đa thức.
ZeroCheck: Xác minh một đa thức đa biến tại bất kỳ điểm nào trên hypercube Boolean có bằng không hay không ∏x∈Hµ f(x) = 0, ∀x ∈ Bµ, để đảm bảo phân bố của các điểm không của đa thức.
SumCheck: Kiểm tra xem tổng giá trị của đa thức nhiều biến có bằng giá trị đã tuyên bố hay không ∑x∈Hµ f(x) = s. Bằng cách chuyển đổi vấn đề đánh giá đa thức nhiều biến thành đánh giá đa thức một biến, giảm độ phức tạp tính toán của bên xác minh. Ngoài ra, SumCheck còn cho phép xử lý hàng loạt, bằng cách đưa vào số ngẫu nhiên, xây dựng tổ hợp tuyến tính để thực hiện xử lý hàng loạt cho nhiều trường hợp kiểm tra tổng.
BatchCheck: Dựa trên SumCheck, xác thực độ chính xác của nhiều đa thức đa biến, nhằm nâng cao hiệu quả của giao thức.
Mặc dù Binius và HyperPlonk có nhiều điểm tương đồng trong thiết kế giao thức, nhưng Binius đã cải tiến trong 3 lĩnh vực sau:
Tối ưu hóa ProductCheck: Trong HyperPlonk, ProductCheck yêu cầu mẫu số U không được bằng 0 trên siêu khối và tích phải bằng một giá trị cụ thể; Binius đã đơn giản hóa quy trình kiểm tra này bằng cách đặc trưng hóa giá trị đó thành 1, từ đó giảm độ phức tạp tính toán.
Xử lý vấn đề chia cho không: HyperPlonk không xử lý đầy đủ trường hợp chia cho không, dẫn đến không thể khẳng định vấn đề không bằng không của U trên siêu khối; Binius đã xử lý vấn đề này một cách chính xác, ngay cả trong trường hợp mẫu số bằng không, ProductCheck của Binius vẫn có thể tiếp tục xử lý, cho phép mở rộng đến bất kỳ giá trị tích nào.
Kiểm tra hoán vị giữa các cột: HyperPlonk không có chức năng này; Binius hỗ trợ kiểm tra hoán vị giữa nhiều cột, điều này cho phép Binius xử lý các trường hợp sắp xếp đa thức phức tạp hơn.
Do đó, Binius đã cải tiến cơ chế PIOPSumCheck hiện có, nâng cao tính linh hoạt và hiệu suất của giao thức, đặc biệt là trong việc xử lý xác minh đa biến đa thức phức tạp hơn, cung cấp hỗ trợ chức năng mạnh mẽ hơn. Những cải tiến này không chỉ giải quyết những hạn chế trong HyperPlonk mà còn đặt nền tảng cho các hệ thống chứng minh dựa trên trường nhị phân trong tương lai.
2.3 PIOP: lập luận dịch chuyển đa tuyến mới------thích hợp cho hypercube boolean
Trong giao thức Binius, việc xây dựng và xử lý đa thức ảo là quan trọng.
Xem bản gốc
Trang này có thể chứa nội dung của bên thứ ba, được cung cấp chỉ nhằm mục đích thông tin (không phải là tuyên bố/bảo đảm) và không được coi là sự chứng thực cho quan điểm của Gate hoặc là lời khuyên về tài chính hoặc chuyên môn. Xem Tuyên bố từ chối trách nhiệm để biết chi tiết.
11 thích
Phần thưởng
11
6
Chia sẻ
Bình luận
0/400
MissedTheBoat
· 13giờ trước
Gọn gàng là vua! Xuống đất!
Xem bản gốcTrả lời0
GasBandit
· 08-05 20:35
Vậy làm sao để nghĩ đến việc tối ưu hóa starks?
Xem bản gốcTrả lời0
CryptoComedian
· 08-05 20:35
Viết luận văn về độ rộng áp lực, đã viết ba thế hệ mà vẫn không đạt tiêu chuẩn.
Xem bản gốcTrả lời0
BlockchainThinkTank
· 08-05 20:23
Chúng tôi cho rằng tối ưu hóa zkp vẫn ở giai đoạn đầu, cần cẩn trọng khi nhìn nhận các giải pháp nâng cao hiệu suất của loại dự án này.
Xem bản gốcTrả lời0
MentalWealthHarvester
· 08-05 20:17
Lại là thời kỳ vàng của tôi, STARKs, vẫn có thể khai thác thêm.
Xem bản gốcTrả lời0
LayoffMiner
· 08-05 20:08
Nghĩ cái gì vậy gas không giảm được mà còn làm màu mè như vậy.
STARKs tối ưu hóa tư duy mới: Binius thúc đẩy sự phát triển của lĩnh vực nhị phân
Phân tích nguyên lý Binius STARKs và suy nghĩ tối ưu hóa
1 Giới thiệu
Một trong những lý do chính khiến STARKs kém hiệu quả là: hầu hết các giá trị trong chương trình thực tế đều nhỏ, chẳng hạn như chỉ số trong vòng lặp for, giá trị đúng/sai, bộ đếm, v.v. Tuy nhiên, để đảm bảo tính an toàn của chứng minh dựa trên cây Merkle, việc sử dụng mã Reed-Solomon để mở rộng dữ liệu sẽ tạo ra nhiều giá trị dư thừa bổ sung chiếm toàn bộ miền, ngay cả khi giá trị gốc rất nhỏ. Để giải quyết vấn đề này, việc giảm kích thước miền trở thành chiến lược then chốt.
Như bảng 1 cho thấy, độ rộng mã hóa của STARKs thế hệ đầu tiên là 252bit, độ rộng mã hóa của STARKs thế hệ thứ hai là 64bit, độ rộng mã hóa của STARKs thế hệ thứ ba là 32bit, nhưng độ rộng mã hóa 32bit vẫn còn rất nhiều không gian lãng phí. So với đó, trường nhị phân cho phép thao tác trực tiếp trên bit, mã hóa chặt chẽ và hiệu quả mà không có không gian lãng phí nào, tức là STARKs thế hệ thứ tư.
| Thời gian | STARKs | Độ rộng mã hóa | |------|--------|----------| | 2018 | Thế hệ thứ 1 | 252bit | | 2021 | Thế hệ thứ 2 | 64bit | | 2022 | Thế hệ 3 | 32bit | | 2023 | Thế hệ thứ 4 | 1bit |
Bảng 1: Đường dẫn biến thể STARKs
So với Goldilocks, BabyBear, Mersenne31 và các nghiên cứu mới trong những năm gần đây về miền hữu hạn, nghiên cứu về miền nhị phân có thể được truy nguyên đến những năm 80 của thế kỷ trước. Hiện nay, miền nhị phân đã được ứng dụng rộng rãi trong mật mã học, ví dụ điển hình bao gồm:
Tiêu chuẩn mã hóa nâng cao (AES), dựa trên miền F28;
Mã xác thực tin nhắn Galois ( GMAC ), dựa trên trường F2128;
Mã QR, sử dụng mã hóa Reed-Solomon dựa trên F28;
Giao thức FRI ban đầu và zk-STARK, cũng như hàm băm Grøstl lọt vào vòng chung kết SHA-3, hàm này dựa trên miền F28, là một loại thuật toán băm rất phù hợp cho việc đệ quy.
Khi sử dụng miền nhỏ hơn, việc mở rộng miền trở nên ngày càng quan trọng để đảm bảo an toàn. Miền nhị phân mà Binius sử dụng hoàn toàn phụ thuộc vào việc mở rộng miền để đảm bảo an toàn và khả năng sử dụng thực tế. Hầu hết các đa thức liên quan đến tính toán của Prover không cần phải vào miền mở rộng, mà chỉ cần hoạt động trong miền cơ sở, từ đó đạt được hiệu suất cao trong miền nhỏ. Tuy nhiên, kiểm tra điểm ngẫu nhiên và tính toán FRI vẫn cần đi sâu vào miền mở rộng lớn hơn để đảm bảo an toàn cần thiết.
Khi xây dựng hệ thống chứng minh dựa trên miền nhị phân, có 2 vấn đề thực tế: Khi tính toán biểu diễn trace trong STARKs, kích thước miền sử dụng phải lớn hơn bậc của đa thức; Khi cam kết Merkle tree trong STARKs, cần thực hiện mã hóa Reed-Solomon, kích thước miền sử dụng phải lớn hơn kích thước sau khi mở rộng mã.
Binius đã đề xuất một giải pháp đổi mới, xử lý hai vấn đề này một cách riêng biệt, và đạt được điều này bằng cách biểu diễn cùng một dữ liệu thông qua hai cách khác nhau: đầu tiên, sử dụng đa biến ( cụ thể là đa thức nhiều tuyến tính ) thay thế cho đa thức một biến, thông qua giá trị của nó trên "siêu lập phương" ( hypercubes ) để biểu diễn toàn bộ quỹ đạo tính toán; thứ hai, do chiều dài của mỗi chiều trong siêu lập phương đều là 2, nên không thể thực hiện mở rộng Reed-Solomon tiêu chuẩn như STARKs, nhưng có thể coi siêu lập phương như hình vuông ( square ), dựa trên hình vuông đó để thực hiện mở rộng Reed-Solomon. Phương pháp này không những đảm bảo tính an toàn mà còn nâng cao đáng kể hiệu suất mã hóa và hiệu suất tính toán.
2 Phân tích nguyên lý
Hiện tại, hầu hết các hệ thống SNARKs được xây dựng thường bao gồm hai phần sau:
Chứng minh Oracle Tương tác Đa thức Lý thuyết Thông tin (Information-Theoretic Polynomial Interactive Oracle Proof, PIOP): PIOP là cốt lõi của hệ thống chứng minh, chuyển đổi các mối quan hệ tính toán đầu vào thành các phương trình đa thức có thể xác minh. Các giao thức PIOP khác nhau thông qua sự tương tác với người xác minh, cho phép người chứng minh gửi dần dần các đa thức, để người xác minh có thể xác minh tính chính xác của phép tính chỉ thông qua việc truy vấn một lượng nhỏ kết quả đánh giá của các đa thức. Các giao thức PIOP hiện có bao gồm: PLONK PIOP, Spartan PIOP và HyperPlonk PIOP, mỗi cái đều có cách xử lý các biểu thức đa thức khác nhau, từ đó ảnh hưởng đến hiệu suất và hiệu quả của toàn bộ hệ thống SNARK.
Kế hoạch cam kết đa thức ( Polynomial Commitment Scheme, PCS ): Kế hoạch cam kết đa thức được sử dụng để chứng minh xem các phương trình đa thức được tạo ra bởi PIOP có hợp lệ hay không. PCS là một công cụ mật mã, qua đó, người chứng minh có thể cam kết một đa thức và sau đó xác minh kết quả đánh giá của đa thức đó, đồng thời ẩn đi thông tin khác của đa thức. Các kế hoạch cam kết đa thức phổ biến bao gồm KZG, Bulletproofs, FRI ( Fast Reed-Solomon IOPP ) và Brakedown, v.v. Các PCS khác nhau có hiệu suất, độ an toàn và bối cảnh áp dụng khác nhau.
Dựa trên nhu cầu cụ thể, chọn các PIOP và PCS khác nhau, và kết hợp với miền hữu hạn hoặc đường cong elliptic phù hợp, có thể xây dựng hệ thống chứng minh có các thuộc tính khác nhau. Ví dụ:
• Halo2: Kết hợp giữa PLONK PIOP và Bulletproofs PCS, dựa trên đường cong Pasta. Halo2 được thiết kế với trọng tâm vào khả năng mở rộng và loại bỏ thiết lập tin cậy trong giao thức ZCash.
• Plonky2: áp dụng PLONK PIOP và FRI PCS kết hợp, và dựa trên miền Goldilocks. Plonky2 được thiết kế để đạt được tính đệ quy hiệu quả. Khi thiết kế những hệ thống này, PIOP và PCS được chọn phải tương thích với miền hữu hạn hoặc đường cong elliptic được sử dụng, để đảm bảo tính chính xác, hiệu suất và an toàn của hệ thống. Sự lựa chọn những kết hợp này không chỉ ảnh hưởng đến kích thước chứng minh SNARK và hiệu quả xác minh, mà còn quyết định xem hệ thống có thể đạt được tính minh bạch mà không cần cài đặt đáng tin cậy hay không, và liệu có thể hỗ trợ chứng minh đệ quy hoặc chứng minh tổng hợp và các chức năng mở rộng khác hay không.
Binius: HyperPlonk PIOP + Brakedown PCS + miền nhị phân. Cụ thể, Binius bao gồm năm công nghệ chính để đạt được hiệu suất và an toàn. Đầu tiên, cấu trúc toán học dựa trên tháp miền nhị phân (towers of binary fields) đã tạo thành nền tảng cho việc tính toán của nó, cho phép thực hiện các phép toán đơn giản trong miền nhị phân. Thứ hai, Binius trong giao thức chứng minh Oracle tương tác (PIOP), đã điều chỉnh kiểm tra sản phẩm và hoán vị của HyperPlonk, đảm bảo sự kiểm tra nhất quán an toàn và hiệu quả giữa các biến và sự hoán vị của chúng. Thứ ba, giao thức giới thiệu một chứng minh dịch chuyển đa tuyến mới, tối ưu hóa hiệu quả xác minh các mối quan hệ đa tuyến trên miền nhỏ. Thứ tư, Binius sử dụng một chứng minh tìm kiếm Lasso cải tiến, cung cấp tính linh hoạt và độ an toàn mạnh mẽ cho cơ chế tìm kiếm. Cuối cùng, giao thức sử dụng kế hoạch cam kết đa thức miền nhỏ (Small-Field PCS), cho phép nó thực hiện hệ thống chứng minh hiệu quả trên miền nhị phân, và giảm thiểu chi phí thường liên quan đến miền lớn.
2.1 trường hữu hạn: tính toán dựa trên towers of binary fields
Trường nhị phân tháp là chìa khóa để thực hiện tính toán có thể xác minh nhanh chóng, chủ yếu do hai yếu tố: tính toán hiệu quả và quy trình số học hiệu quả. Trường nhị phân về bản chất hỗ trợ các phép toán số học hiệu quả cao, khiến nó trở thành lựa chọn lý tưởng cho các ứng dụng mật mã nhạy cảm với yêu cầu hiệu suất. Hơn nữa, cấu trúc trường nhị phân hỗ trợ quy trình số học đơn giản hóa, tức là các phép toán thực hiện trên trường nhị phân có thể được biểu diễn dưới dạng đại số gọn gàng và dễ xác minh. Những đặc điểm này, kết hợp với khả năng tận dụng đặc điểm phân cấp của nó thông qua cấu trúc tháp, làm cho trường nhị phân đặc biệt phù hợp với các hệ thống chứng minh có khả năng mở rộng như Binius.
Trong đó, "canonical" đề cập đến cách biểu diễn duy nhất và trực tiếp của các phần tử trong miền nhị phân. Ví dụ, trong miền nhị phân cơ bản F2, bất kỳ chuỗi k bit nào cũng có thể được ánh xạ trực tiếp đến một phần tử miền k bit. Điều này khác với miền số nguyên tố, nơi mà miền số nguyên tố không thể cung cấp cách biểu diễn chuẩn này trong một số bit nhất định. Mặc dù miền số nguyên tố 32 bit có thể chứa trong 32 bit, nhưng không phải mọi chuỗi 32 bit đều có thể tương ứng duy nhất với một phần tử miền, trong khi miền nhị phân lại có sự tiện lợi của ánh xạ một-một này. Trong miền số nguyên tố Fp, các phương pháp giảm phổ biến bao gồm giảm Barrett, giảm Montgomery, và các phương pháp giảm đặc biệt cho các miền hữu hạn cụ thể như Mersenne-31 hoặc Goldilocks-64. Trong miền nhị phân F2k, các phương pháp giảm thường dùng bao gồm giảm đặc biệt ( như được sử dụng trong AES ), giảm Montgomery ( như được sử dụng trong POLYVAL ) và giảm đệ quy ( như Tower ). Bài báo "Khám Phá Không Gian Thiết Kế của ECC-Hardware Triển Khai Miền Số Nguyên Tố So Với Miền Nhị Phân" chỉ ra rằng, miền nhị phân không cần phải thêm bậc trong các phép toán cộng và nhân, và phép toán bình phương trong miền nhị phân rất hiệu quả, vì nó tuân theo quy tắc đơn giản (X + Y )2 = X2 + Y 2.
Như hình 1 cho thấy, một chuỗi 128 bit: Chuỗi này có thể được giải thích theo nhiều cách trong ngữ cảnh của miền nhị phân. Nó có thể được coi là một phần tử duy nhất trong miền nhị phân 128 bit, hoặc được phân tích thành hai phần tử miền tháp 64 bit, bốn phần tử miền tháp 32 bit, 16 phần tử miền tháp 8 bit, hoặc 128 phần tử miền F2. Sự linh hoạt của cách biểu diễn này không yêu cầu bất kỳ chi phí tính toán nào, chỉ là một chuyển đổi kiểu chuỗi bit (typecast), là một thuộc tính rất thú vị và hữu ích. Đồng thời, các phần tử miền nhỏ có thể được đóng gói thành các phần tử miền lớn hơn mà không cần chi phí tính toán bổ sung. Giao thức Binius đã tận dụng đặc điểm này để cải thiện hiệu quả tính toán. Ngoài ra, bài báo "On Efficient Inversion in Tower Fields of Characteristic Two" đã khám phá độ phức tạp tính toán của các phép nhân, bình phương và đảo ngược trong miền tháp nhị phân n bit ( có thể phân rã thành miền con m bit ).
Hình 1: Miền nhị phân tháp
2.2 PIOP: Phiên bản cải biên HyperPlonk Product và PermutationCheck------ Áp dụng cho trường nhị phân
Thiết kế PIOP trong giao thức Binius đã tham khảo HyperPlonk, áp dụng một loạt cơ chế kiểm tra cốt lõi để xác minh tính chính xác của đa thức và tập hợp đa biến. Những kiểm tra cốt lõi này bao gồm:
GateCheck: xác minh chứng thực bí mật ω và đầu vào công khai x có thỏa mãn mối quan hệ toán học C(x, ω)=0, để đảm bảo mạch hoạt động chính xác.
PermutationCheck: Xác minh kết quả đánh giá của hai đa thức nhiều biến f và g trên hypercube Boolean có phải là quan hệ hoán vị hay không f(x) = f(π(x)), để đảm bảo tính nhất quán của sự sắp xếp giữa các biến đa thức.
LookupCheck: Xác thực giá trị của đa thức có nằm trong bảng tra cứu đã cho hay không, tức là f(Bµ) ⊆ T(Bµ), đảm bảo một số giá trị nằm trong phạm vi xác định.
MultisetCheck: Kiểm tra xem hai tập hợp đa biến có bằng nhau hay không, tức là {(x1,i,x2,)}i∈H={(y1,i,y2,)}i∈H, đảm bảo tính nhất quán giữa nhiều tập hợp.
ProductCheck: Kiểm tra xem giá trị của đa thức có lý trên siêu lập phương Boolean có bằng một giá trị được khai báo nào đó ∏x∈Hµ f(x) = s, để đảm bảo tính chính xác của tích đa thức.
ZeroCheck: Xác minh một đa thức đa biến tại bất kỳ điểm nào trên hypercube Boolean có bằng không hay không ∏x∈Hµ f(x) = 0, ∀x ∈ Bµ, để đảm bảo phân bố của các điểm không của đa thức.
SumCheck: Kiểm tra xem tổng giá trị của đa thức nhiều biến có bằng giá trị đã tuyên bố hay không ∑x∈Hµ f(x) = s. Bằng cách chuyển đổi vấn đề đánh giá đa thức nhiều biến thành đánh giá đa thức một biến, giảm độ phức tạp tính toán của bên xác minh. Ngoài ra, SumCheck còn cho phép xử lý hàng loạt, bằng cách đưa vào số ngẫu nhiên, xây dựng tổ hợp tuyến tính để thực hiện xử lý hàng loạt cho nhiều trường hợp kiểm tra tổng.
BatchCheck: Dựa trên SumCheck, xác thực độ chính xác của nhiều đa thức đa biến, nhằm nâng cao hiệu quả của giao thức.
Mặc dù Binius và HyperPlonk có nhiều điểm tương đồng trong thiết kế giao thức, nhưng Binius đã cải tiến trong 3 lĩnh vực sau:
Tối ưu hóa ProductCheck: Trong HyperPlonk, ProductCheck yêu cầu mẫu số U không được bằng 0 trên siêu khối và tích phải bằng một giá trị cụ thể; Binius đã đơn giản hóa quy trình kiểm tra này bằng cách đặc trưng hóa giá trị đó thành 1, từ đó giảm độ phức tạp tính toán.
Xử lý vấn đề chia cho không: HyperPlonk không xử lý đầy đủ trường hợp chia cho không, dẫn đến không thể khẳng định vấn đề không bằng không của U trên siêu khối; Binius đã xử lý vấn đề này một cách chính xác, ngay cả trong trường hợp mẫu số bằng không, ProductCheck của Binius vẫn có thể tiếp tục xử lý, cho phép mở rộng đến bất kỳ giá trị tích nào.
Kiểm tra hoán vị giữa các cột: HyperPlonk không có chức năng này; Binius hỗ trợ kiểm tra hoán vị giữa nhiều cột, điều này cho phép Binius xử lý các trường hợp sắp xếp đa thức phức tạp hơn.
Do đó, Binius đã cải tiến cơ chế PIOPSumCheck hiện có, nâng cao tính linh hoạt và hiệu suất của giao thức, đặc biệt là trong việc xử lý xác minh đa biến đa thức phức tạp hơn, cung cấp hỗ trợ chức năng mạnh mẽ hơn. Những cải tiến này không chỉ giải quyết những hạn chế trong HyperPlonk mà còn đặt nền tảng cho các hệ thống chứng minh dựa trên trường nhị phân trong tương lai.
2.3 PIOP: lập luận dịch chuyển đa tuyến mới------thích hợp cho hypercube boolean
Trong giao thức Binius, việc xây dựng và xử lý đa thức ảo là quan trọng.